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What is data science?

» Data collection

« Database management

« Data-cleaning (wrangling)
 Research and analysis

of data.
(The “science” part)
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Data science

From Wikipedia, the free encyclopedia

Not to be confused with information science.

Data science is an inter-disciplinary field that uses scientific
methods, processes, algorithms and systems to extract knowledge
and insights from structured and unstructured data,!'%] and apply
knowledge and actionable insights from data across a broad range
of application domains.

glassdoor datascientist

8 Jobs
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= Most Relevant 2971 data scientist Jobs in Stanford, CA




What is data science research?

Statistics: Empirical Machine Learning:
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Drawbacks: Statistics and ML Paradigms

Statistics:

e Reliance on generative models Stats Alignment Problem:
e Reliance on asymptotic theory Deliverables may not be
e Focus on mathematical deliverable relevant to truth
Empirical Machine learning: ML Alignment Problem:

e Reliance on predictive accuracy alone Uncertain relationships

e Reliance on what works on one dataset between poetic

e Conference papers promote “narratives” without deliverables and broader

solidarity lessons.



XY/ studies

... an important Data Science Paradigm responding to
the Statistics/ML Alignment Problems



Y — datasets considered canonical for certain task

x — all relevant methods

z — control parameters

W — observables of interest




Algorithm 1: Description of XYZ experiment

Input :methods X, datasets Y, control parameters Z
Output: observables W

foreach method x € X do

2 foreach dataset y € Y do

foreach control parameter z € Z do
/* run experiment and collect observables
W(x, y,z) = Experiment(x, v, z)

end ==

[y

(O8]

end

N SN G e

end




XYZ In...

e Medical Research
(Meta-clinical)

e Empirical ML Research

e COVID-19 Simulation




An Example in Meta-Clinical research

Comparative Meta-analysis of Prognostic Gene Signatures for
Late-Stage Ovarian Cancer

Levi Waldron, Benjamin Haibe-Kains, Aedin C. Culhane, Markus Riester, Jie Ding, Xin Victoria WWang, Mahnaz Ahmadifar,
Svitlana Tyekucheva, Christoph Bernau, Thomas Risch, Benjamin Frederick Ganzfried, Curtis Huttenhower, Michael Birrer,
Giovanni Parmigiani

Manuscript received February 24, 2013; revised January 13, 2014; accepted January 29, 2014.

Correspondence to: Giovanni Parmigiani, PhD, Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, 450 Brookline Ave,
Boston, MA 02115 (e-mail: gp@jimmy.harvard.edu).

Background

Methods

Results

Ovarian cancer is the fifth most common cause of cancer deaths in women in the United States. Numerous gene
signatures of patient prognosis have been proposed, but diverse data and methods make these difficult to com-
pare or use in a clinically meaningful way. We sought to identify successful published prognostic gene signatures
through systematic validation using public data.

A systematic review identified 14 prognostic models for late-stage ovarian cancer. For each, we evaluated its
1) reimplementation as described by the original study, 2) performance for prognosis of overall survival in inde-
pendent data, and 3) performance compared with random gene signatures. We compared and ranked models
by validation in 10 published datasets comprising 1251 primarily high-grade, late-stage serous ovarian cancer
patients. All tests of statistical significance were two-sided.

Twelve published models had 95% confidence intervals of the C-index that did not include the null value of 0.5;
eight outperformed 97.5% of signatures including the same number of randomly selected genes and trained on
the same data. The four top-ranked models achieved overall validation C-indices of 0.56 to 0.60 and shared anti-
correlation with expression of immune response pathways. Most models demonstrated lower accuracy in new
datasets than in validation sets presented in their publication.
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Examples in Empirical ML

https://arxiv.org » cs

Understanding deep learning requires rethinking generalization
by C Zhang - 2016 - Cited by 2642

Perfect score on the ICLR reviews

ICLR 2017 best paper award

M 7420 @ 2 Free Issues of Forbes

What You Need To Know About One Of The Most
Talked-About Papers On Deep Learning To Date

00000
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Figure 1: Fitting random labels and random pixels on CIFAR10. (a) shows the training loss of
various experiment settings decaying with the training steps. (b) shows the relative convergence
time with different label corruption ratio. (c) shows the test error (also the generalization error since
training error is 0) under different label corruptions.

Table 2: The top-1 and top-5 accuracy (in percentage) of the Inception v3 model on the ImageNet
dataset. We compare the training and test accuracy with various regularization turned on and off,
for both true labels and random labels. The original reported top-5 accuracy of the Alexnet on
ILSVRC 2012 is also listed for reference. The numbers in parentheses are the best test accuracy
during training, as a reference for potential performance gain of early stopping.

data weight

aug dropout decay top-1 train  top-5 train top-1 test top-5 test
ImageNet 1000 classes with the original labels

yes yes yes 92.18 99.21 77.84 93.92

yes no no 92.33 99.17 72.95 90.43

no no yes 90.60 100.0 67.18 (72.57) 86.44 (91.31)

no no no 99.53 100.0 59.80 (63.16)  80.38 (84.49)
Alexnet (Krizhevsky et al., 2012) - - - 83.6
ImageNet 1000 classes with random labels

no yes yes 91.18 97.95 0.09 0.49

no no yes 87.81 96.15 0.12 0.50

no no no 95.20 99.14 0.11 0.56
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Examples in Empirical ML

https://arxiv.org> stat @

Are GANs Created Equal? A Large-Scale Study
by M Lucic - 2017 - Cited by 548 -
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Figure 4: A wide range hyperparameter search (100 hyperparameter samples per model). Black stars indicate
the performance of suggested hyperparameter settings. We observe that GAN training is extremely sensitive to
hyperparameter settings and there is no model which is significantly more stable than others.
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Great example!




Decision Making and COVID-19

REOPENING SCHOOLS

Stanford University Inviting Juniors and Seniors Back to . . .
Campus for Spring Classes COVID-19 and Reactivation Planning

The University noted that most undergraduate instruction would continue to be remote.

By Bay City News « Published March 14, 2021 « Updated on March 15, 2021 at f 1" 4 =
8:34am

Epidemiological Modeling
Cornell University To Require |
COVI D"19 Vaccine FOI‘ On_cam pus The health of our campus community and the greater Ithaca area were

key considerations in Cornell’s plan to invite students to campus for
StUdents instruction. To guide this decision-making, the university relied on
EEEEEEEEEEEEEEE numerous evidence-based sources, including the findings of

SRFIL . 2008 2516 B < FCECIURE epidemiological modeling by experts on our faculty.

How much can we trust simulated models?




Examples in COVID-19 Simulations

Simple Model, Varying

C ity Size (Random, Adjusted) Metric Scale Extra C i Extra Community Strength (Adjusted)
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For each method X and dataset Y, V1is plotted
against V2 and colored with V3. :ml Model for Joumnal Discarding Policy
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224 x224x3 224 x224x64

2x 128

56|x 56 x 256
psxsxgiz 77512
ax13x> 1x1%4096 1x1x 1000
=LX1x4096 1x1x1(

net_Tlist = [

5 convolution+ReL.U

() max pooling

) fully connected+ReLU
(] softmax

'CNN',

'AlexNet’',
'VGG11_bn',
'VGG13_bn',
'VGG16_bn',
'VGG19_bn',
'ResNetl18',
'ResNet34',
'ResNet50',
'ResNet101’',
'ResNet152"',
'SqueezeNet_1_0',
'SqueezeNet_1_1',
'DenseNet121’,
'DenseNet161’',
'DenseNet169',
'DenseNet201’',
'Inception3’




1l
—

dataset_list
'MNIST',
'FashionMNIST',
'"EMNIST_byclass',
'"EMNIST_bymerge',
'EMNIST _balanced',
'EMNIST letters',
'"EMNIST_digits',

'CIFAR1Q',

'CIFAR100',

'STL10", o —

'SVHN', EBERWyay
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lr_list

I
—

.075,
.05,
.025,
.01,
.0075,
. 0050,
.0025,
.001,
. 00075,
. 0005,
. 00025,
. 0001,
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XYZ experiment

for model_name in [...]:
for dataset_name in [...]:
for learning_rate in [...]:

network = create_model(model_name)
dataset = create_dataset(dataset_name)

for epoch in range(num_epochs):
for image, target in dataset:
output = network(image)
loss(output, target).backward()

optimizer.step(learning_rate)

acc = compute_accuracy() ¢

T\P\ save EVERYTHING about
° the experiment in the CSV

save_results(acc) —



results_opts = {'training_results_path': training_results_path,
"train_dump_file' : str(row['train_dump_file']),
'save_init_epoch' : bool(row['save_init_epoch'l),
'garbage_collect' : bool(row['garbage_collect']),

XYZ experiment in praCtiCG ;save_middle' : bool(row['save_middle']),

cpu_opts = {'one_batch' : bool(row['one_batch'])}
loader_opts = {'train_dataset’ : str(row(['train_dataset']) _ofiu . VioE
'test_dataset' 1 row['test_dataset'], ' anals_opts - {,k . \ . float(*inf'),
'phase’ : None, IprOJect_last E False,.
"loader_type’ : str(rowl'loader_type'l), Iana1§_resglts_path 1 analysis_results_path,
'pytorch_dataset' : bool(row['pytorch_dataset']), do_visual : False,

'dataset_path'
'dataset_path'
'dataset_kwargs'
'im_size'
'padded_im_size'
'num_classes'
'input_ch'
'threads'
'limited_dataset'

'examples_per_class':
1 epc_seed_idx,

: train_seed_idx,

: str(row['size_list']),

: bool(row['pretrained']),
: bool(row['multilabel']),
10,

: True,

: False,

'epc_seed'
'train_seed'
'size_list'
'pretrained’
'multilabel’
'corrupt_prob'
'test_trans_only'
'concat_loader'

'loader_constructor'

'drop_last'
}

train_opts = {'crit'
'net’
'optim'
'epochs’
et
'milestones_perc'
'gamma’
"train_batch_size'
'test_batch_size'
'cuda’
'seed’
'epsi’

'../../data’,
'/scratch/users/papyan/datasets’,

1 {},

: int(row['im_size']),

: int(row['padded_im size'l),

: int(row['num_classes']),

: int(row['input_ch'l),

10,

: bool(row['limited_dataset'l]),

int(row['examples_per_class']),

Constructor,

: False,

: str(row['crit']),

: str(row['net']),

: str(row['optim']),

: int(row['epochs']),

: float(row['lr']),

: str(row['milestones_perc']l),
: float(row['gamma'l),

: 128,

: 128,

: torch.cuda.is_available(),
: int(row['seed']),

: float(row['seed']),

spectral_opts

'embedded_max_examples': 512,
'stats_max_examples': float('inf'),

'save_Sigma_wc' : True,
'vgg_remove_last_dropout' : True,
'reset_classifier' : True,
'analyze_last_only' : True,
'1_analysis' HE .

'layers_func' : 'get_imp_layers',
'hook_type' : 'output',
'activations_per_example': 10,
'distribution’ : 'norm',

'coeff_max_examples': 1000,
'single_coeff_model': True,

'record_activation' : False,
'compute_norm_mean' : False,
'compute_Sigma_b_w' : False,

'compute_w_norm_mean': True,
'compute_t_norm_mean': True,

'power’ 1 0.75,

'seed' : False,

}

{'hessian_type' : hessian_type_list[hessian_type_i
'init_poly_deg' : 64,

'poly_deg' 1 256, 2
'mat_vec_iters' : float('inf'),
'poly_points' 1 2%%9,
'spectrum_margin' : 0.05,
'log_hessian' : False,
'start_eig_range' : —float('inf'),

'stop_eig_range' : float('inf'),
'power_method_iters': 256,
'repeat_idx' i repeat_idx,
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Me coding plots on python:

import pandas as pd
import matplotlib.pyplot as plt

df = get_data_frame(path_to_csv)

colors = cm.

for dataset
for net
for

rainbow(np.linspace(®, 1, num_learning_rates))

in [...]:
in [...]:
learning_rate in [...]:

df = df[(df['dataset'] == dataset)
& (df['net'] == net)
& (df['learning_rate'] == learning_rate)]

plt.plot(df.epoch, df.accuracy, color=colors[learning_rate])
plt.title('dataset: {}, net: {}, learning_rate: {}',
dataset,
net,
learning rate)
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Tableau is...

e Powerful: can compute mathematical expressions
e Efficient: can handle tens of GB easily

e R: you write R scripts (can do regression!)

e Fast: few clicks to create plot

e Easy: drag and drop

e Cloud: data sits on cloud

e Time: spent on more useful things



Tableau-Generated Plot:

Papyan, Vardan, X. Y. Han, and David L. Donoho. "Prevalence of Neural Collapse during the terminal phase of deep learning training."
Proceedings of the National Academy of Sciences 117, no. 40 (2020): 24652-24663.
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Fig. 2. Train class means become equinorm. The formatting and technical details are as described in Section 3. In each array cell, the vertical axis
shows the coefficient of variation of the centered class-mean norms as well as the network classifiers norms. In particular, the blue lines show
Stdc (|| ee — wegll,) /Ava ([l e — gll,) where {u } are the class means of the last-layer activations of the training data and p is the corresponding train
global mean; the orange lines show Stdc(||wc||,)/Avg (||wc||,) where w is the last-layer classifier of the cth class. As training progresses, the coefficients of
variation of both class means and classifiers decrease.
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For each method X and dataset Y, V1is plotted
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PYTHORCH

RESEARCH ARTICLE L))

i

Prevalence of neural collapse during the terminal
phase of deep learning training

Vardan Papyan, (2 X. Y. Han, and David L. Donoho

EIaStIISter aWS + See all authors and affiliations

PNAS October 6, 2020 117 (40) 24652-24663; first published September 21, 2020;
https://doi.org/10.1073/pnas.2015509117

Contributed by David L. Donoho, August 18, 2020 (sent for review July 22, 2020; reviewed by Helmut Boelsckei and
Stéphane Mallat)

Figures & S| Info & Metrics [ PDF

Google Cloud Platform Significance

Modern deep neural networks for image classification have achieved superhuman
performance. Yet, the complex details of trained networks have forced most practitioners
and researchers to regard them as black boxes with little that could be understood. This
paper considers in detail a now-standard training methodology: driving the cross-entropy

pid 8dee32690f1fadf3ad36770d66874d6bb29atbef

remote_account: pa pyan@login .sherlock.stanford.edu loss to zero, continuing long after the classification error is already zero. Applying this

methodology to an authoritative collection of standard deepnets and datasets, we observe

1 28560970 COMPLETED

2 28560972 COMPLETED the emergence of a simple and highly symmetric geometry of the deepnet features and of

3 28560973 COMPLETED the deepnet classifier, and we document important benefits that the geometry conveys—
thereby helping us understand an important component of the modern deep learning

training paradigm.
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XYZ Paradigm for Data Science Research
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generative models.
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Epilogue: An XYZ Story

RESEARCH ARTICLE L))
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Prevalence of neural collapse during the terminal
phase of deep learning training

Vardan Papyan, (= X. Y. Han, and David L. Donoho
+ See all authors and affiliations

PNAS October 6, 2020 117 (40) 24652-24663; first published September 21, 2020;
https://doi.org/10.1073/pnas.2015509117

Contributed by David L. Donoho, August 18, 2020 (sent for review July 22, 2020; reviewed by Helmut Boelsckei and
Stéphane Mallat)

Figures & SI Info & Metrics O PDF

Significance

®

Modern deep neural networks for image classification have achieved superhuman
performance. Yet, the complex details of trained networks have forced most practitioners
and researchers to regard them as black boxes with little that could be understood. This
paper considers in detail a now-standard training methodology: driving the cross-entropy
loss to zero, continuing long after the classification error is already zero. Applying this
methodology to an authoritative collection of standard deepnets and datasets, we observe
the emergence of a simple and highly symmetric geometry of the deepnet features and of
the deepnet classifier, and we document important benefits that the geometry conveys—
thereby helping us understand an important component of the modern deep learning

training paradigm.
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e Original Goal: Can deep net performance be predicted?
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e Statistician’s Intuition; Bias-variance

o Bias: How the class-means
behave.

o Variance: How spread out the
data is around the class mean.
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s Measurement:%Tr{Zglzw}

® Observation: Shrinking towards 0!

® Implication: Variance is shrinking
compared to class means.
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e Previous works have shown that for fixed
last-layer activations, network classifiers
converge to maximum-margin classifiers.

e |[f activations collapse to the same class-
means, these classifiers converge to
nearest-neighbor.

® The means themselves must be
maximally distanced:
An Equiangular Tight Frame!
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e |f ETF hypothesis holds, angles between any two class-means must be the same.
e Check this hypothesis with XYZ: It holds!
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Fig. 3. Classifiers and train class means approach equiangularity. The formatting and technical details are as described in Section 3. In each array cell, the
vertical axis shows the SD of the cosines between pairs of centered class means and classifiers across all distinct pairs of classes ¢ and ¢’. Mathematically,
denote cos,, (€, ) = (s — pg, ter — ) /(ltae — Bl It — I, and cosw (€, ) = (we, wer) /(| well, | W [|,) where {we}E_y, {pc}Soy, and pug are as in
Fig. 2. We measure Std. ./, (cos,(c, c’)) (blue) and Std,cr s c(cosw(c, c’)) (orange). As training progresses, the SDs of the cosines approach zero, indicating
equiangularity.
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More XYZ experiments:

Checking equinormness, nearest-neighbor
behavior etc.

Publish and share our findings.
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Significance

Modern deep neural networks for image classification have achieved superhuman
performance. Yet, the complex details of trained networks have forced most practitioners
and researchers to regard them as black boxes with little that could be understood. This
paper considers in detail a now-standard training methodology: driving the cross-entropy
loss to zero, continuing long after the classification error is already zero. Applying this
methodology to an authoritative collection of standard deepnets and datasets, we observe
the emergence of a simple and highly symmetric geometry of the deepnet features and of
the deepnet classifier, and we document important benefits that the geometry conveys—
thereby helping us understand an important component of the modern deep learning
training paradigm.
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e Multiple follow-up works since September 2020!
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arXiv:2101.12699 [pdf, other] cs.CV  math.OC  statML
Layer-Peeled Model: Toward Understanding Well-Trained Deep Neural Networks
Authors: Cong Fang, Hangfeng He, Qi Long, Weijie J. Su

Abstract: ...on class-balanced datasets, we prove that any solution to this model forms a simplex equiangular tight frame, which in part explains the recently
discovered phenomenon of neural collapse in deep learning training [PHD20]. Moreover, when moving to the imbalanced case, our analysis of the Layer-
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Explicit regularization and implicit bias in deep network classifiers trained with the square loss
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Neural Collapse with Cross-Entropy Loss

Authors: Jianfeng Lu, Stefan Steinerberger

Abstract: ..., the global minimum is given by the simplex equiangular tight frame, which justifies the neural collapse behavior. We also prove that as
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Fickus. v More

Submitted 18 January, 2021; v1 submitted 15 December, 2020; originally announced December 2020.

.arXiv:2011.11619 [pdf, other]

Neural collapse with unconstrained features
Authors: Dustin G. Mixon, Hans Parshall, Jianzong Pi

Abstract: Neural... V More
Submitted 23 November, 2020; originally announced November 2020.



